Santiago de Cali, Febrero 3 del 2021
DOCENTE: GUILLERMO RIOS CAÑAS
CONTACTO: WHATSAAP 3187948188
GUIA ORIENTADORA DE ALGEBRA
NOTA: SE RESUELVE EN EL CUADERNO SOLO LAS ACTIVIDADES.
ACTIVIDAD ESPECIAL: MEMORIZAR LA FRASE DEL COMIENZO DE LA GUIA.
ESTANDAR: Utilizo números racionales, en sus distintas expresiones (fracciones, razones, decimales o porcentajes) para resolver problemas en contextos de medida. Identifico y utilizo la potenciación, la radicación y la logaritmación para representar situaciones matemáticas y no matemáticas y para resolver problemas. * Justico procedimientos aritméticos utilizando las relaciones y propiedades de las operaciones. * Reconozco cómo diferentes maneras de presentación de información pueden originar distintas interpretaciones * Entiendo la importancia de mantener expresiones de afecto y cuidado mutuo con mis familiares, amigos, amigas y parejas, a pesar de las diferencias, disgustos o conflictos. * Identifico diferentes métodos para solucionar sistemas de ecuaciones lineales. * Uso procesos inductivos y lenguaje algebraico para formular y poner a prueba conjeturas. Modelo situaciones de variación con función polinómica * Identifico relaciones entre propiedades de las gráficas y propiedades de las ecuaciones algebraicas. *Construyo expresiones algebraicas equivalentes a una expresión algebraica dada.
DESEMPEÑOS, DBA y CGL.
Reconoce la existencia de los números irracionales como números no racionales y los describe de acuerdo con sus características y propiedades.
* identifica y resuelve situaciones relacionadas con naturales y enteros.
* Reconoce la importancia y necesidad de relacionarse con maestros y compañeros
APRENDIZAJES:
Desarrolla actividades relacionadas con el manejo de racionales.
* Caracteriza las propiedades de la potenciación relacionándolas con eventos matemáticos.
* Analiza y emite juicios acerca de situaciones y eventos que involucran racionales.
* Permite relacionarse con sus pares y maestros.
EJES CONCEPTUALES:
Repaso general
– Enteros.
– Racionales
– Potenciación
– Radicación.
TRANSVERSALIDAD DE CATEDRAS:
Educación Física. Establecimiento y dimensión de espacios.
Operaciones contables. Con apoyo y manejo de cálculos y manejo de calculadora.
ESTRATEGIAS DE EVALUACION:
Considerando que la evaluación es un proceso y no un modelo sumatorio de promedios se considera todos los eventos dentro del ambiente de aprendizaje parte de la evaluación.
* Relación consigo mismo y con el otro.
* Posibilidades del trabajo en equipo.
*Desarrollo de actividades a partir del dominio individual del estudiante y de la temática que se aborda en el periodo.
* Responsabilidad y cumplimiento de pactos de trabajo.
* Participación de propuestas académicas según las posibilidades del estudiante: orales, escritas, graficas.
TEMA: NUMEROS ENTEROS.
HISTORIA DE LOS NUMEROS ENTEROS
EL ORIGEN DE LOS NUMEROS ENTEROS.
El hombre desde principios de la evolución, utilizó recursos para facilitar su relación con el medio que lo rodea; para contar cantidades utilizaba piedras, hacía marcas en los arboles o nudos en sogas. Desde la era primitiva el hombre siempre buscó respuestas a sus inquietudes.
¿Cómo y cuándo surgieron los números enteros?
El número cero apareció en Mesopotamia hacia el siglo III a.C.
Mesopotamia:
Las tierras que rodeaban a los ríos Tigris y Eufrates eran llanuras bajas en donde la tierra era profunda y fértil. Cada año, en primavera, los ríos inundaban sus orillas depositando una rica capa de limo (sedimento) sobre la tierra. Sin embargo, a pesar de ello la región (en la actualidad parte de Iraq) era demasiado seca como para ser un terreno ideal para la agricultura. En verano caía muy poca o ninguna lluvia y la tierra se volvía seca y dura. Sin agua no podían crecer las cosechas. Mesopotamia sólo pudo ser cultivaba con éxito cuando sus habitantes aprendieron a controlar y regular la crecida de las aguas dadoras de vida.
Los números enteros abarcan a los números naturales (los que se utilizan para contar los elementos de un conjunto), incluyendo al cero y a los números negativos (que son el resultado de restar a un número natural otro mayor).
El origen del cero como número se dió en la India. Si buscamos a quien inventó el cero la verdad es que no fue una sola persona la que desarrolló este importante concepto, pero debemos considerar a Brahmagupta, un matemático y astrónomo Indio quien lo utilizo por primera vez tal como lo conocemos hoy en día.
Es posible que Brahmagupta haya sido el idealizador del concepto del “cero” ya que en su obra Brahmasphutasiddhanta del año 628 aparece por primera vez esta idea. La obra trataba también sobre aritmética y números negativos en términos muy parecidos a los de la moderna matemática.
Un numero entero es cualquier elemento del conjunto formado por los números naturales, sus opuestos (versiones negativas de los naturales) y el cero. … Los naturales (o enteros positivos): +1, +2, +3, +4, +5… El cero, que no es ni positivo ni negativo. Los enteros negativos: -1, -2, -3, -4, -5…
Los Números Enteros, nos permiten comparar diversas cantidades y son la base de los otros números y nos sirven para contar. Como se puede ver son los números enteros que mediante su representación positiva y negativa nos ayudan a ubicar cantidades en el tiempo y el espacio.
ACTIVIDAD No. 1
Colocar la respuesta que corresponde:
1. Desde la era primitiva el hombre buscó respuestas a: |
DUDAS E INQUIETUDES. |
2. El número apareció donde: |
MESOPOTAMIA |
3. Que rios rodeaban a Mesopotamia: |
TIGRIS Y EL EUFRATES. |
4. La región en ese entonces como era: |
ERA DEMASIADO SECA PARA EL CULTIVO. |
5. Mesopotamia podía ser cultivada con éxito cuando: |
CUANDO SE PODIAN CANALIZAR LOS RIOS. |
6. Los numeros enteros que abarcan: |
LOS NUMEROS NATURALES, LOS NEGATIVOS Y EL CERO. |
7. Posible idealizador del cero: |
Brahmagupta |
8. Los numeros enteros nos permiten: |
COMPARAR DIVERSAS CANTIDADES. |
9. Para que nos sirven los numeros enteros: |
PARA CONTAR. |
10. Los numeros enteros nos ayudan: |
NOS AYUDAN A UBICAR CANTIDADES EN EL TIEMPO Y EN EL ESPACIO. |
NOTA: ACTIVIDAD No. 1 QUEDA RESUELTA CON EL GRADO 8-2 MARZO 01
NOTA: CON EL GRADO 8-1 QUEDA SOCIALIZADA LA ACTIVIDAD No. 2
ACTIVIDAD No. 2 TOTALIDAD EN EL CUADERNO LA RECTA NUMERICA LA DIVIDE EL CERO, QUE NO ES POSITIVO NI NEGATIVO. EL LADO DERECHO ESTAN LAS CANTIDADES POSITIVAS AL LADO IZQUIERDO ESTAN LAS CANTIDADES NEGATIVAS. |
0
X´ ———-I——–I——–I——-I——-I———I—- –I——-I——–I——-I———- X
-4 -3 -2 -1 1 2 3 4 5
TENER EN CUENTA: QUE LAS CANTIDADES POSITIVAS ES LO QUE TENEMOS Y LAS CANTIDADES NEGATIVAS ES LO QUE DEBEMOS.
DOS CANTIDADES NEGATIVAS, SON DOS DEUDAS Y LAS DEBEMOS SUMAR PARA SABER CUANTO DEBEMOS.
SI EN CASO QUE NO SE PUEDA PAGAR LA TOTALIDAD DE LA DEUDA, ENTONCES DEBEMOS DE ABONAR.
EXAMPLE:
4 + 3 = 7 4 – 3 = 1 Pero, -4 + 3 = -1 NOS INDICA QUE ESTAMOS DEBIENDO 4, POR LO TANTO NO PODEMOS PAGAR, ASI QUE, ABONAMOS 3 Y QUEDAMOS DEBIENDO 1, ES DECIR -1 Pero, -4 -3 = -7 , TENEMOS DOS DEUDAS O DOS CANTIDADES NEGATIVAS, LAS CUALES DEBEMOS DE SUMAR, PARA SABER EN TOTAL CUANTO ESTAMOS DEBIENDO. |
REMEMBER: ESTA ACTIVIDAD SE TRABAJA DE ACUERDO AL EXAMPLE ANTERIOR.
5 |
– |
9
|
= |
– 4 |
8 |
– |
16
|
= |
– 8 |
5 |
– |
13
|
= |
-8 |
12 |
– |
17
|
= |
-5 |
– 4 |
– |
2
|
= |
-6 |
-5 |
+ |
8
|
= |
|
-10 |
– |
20
|
= |
-30 |
12 |
– |
18
|
= |
|
5 |
– |
12
|
= |
|
15 |
_ |
19
|
= |
|
-14 |
– |
8
|
= |
|
23 23 |
– + |
( -30) REGLA DEL PARENTESIS. EL MENOS ME HACE CAMBIAR LO QUE ESTA DENTRO.
30 |
= |
|
– 12 |
– |
-4
|
= |
|
-4 |
– |
-9
|
= |
NOTA: TERMINAR LA ANTERIOR ACTIVIDAD CON EL GRADO 8-2 MARZO 01
EXPLICACION DE EJERCICIOS CON PARENTESIS PRECEDIDOS DEL SIGNO MENOS Y DEL SIGNO MAS.
EXAMPLE:
-3 – -2 -5 + 6 =
– 3 – ( – 2 ) – 5 + 6 =
-3 + 2 – 5 + 6 = 0
EJERCICIO DE REFUERZO:
– 3 – – 2 + – 4 – – 3 + – 2
-3 – ( -2 ) + ( -4 ) – ( -3) + ( -2)
– 3 + 2 – 4 +3 -2 =
TAREA: REALIZAR 1 EJERCICIO TIPO( CAMBIA LAS CANTIDADES)
REGLA DEL PARENTESIS
APLICAMOS LA REGLA DEL PARENTESIS, LA CUAL DICE QUE TODO PARENTESIS, PRECEDIDO DEL SIGNO MENOS, HACE QUE NOS CAMBIE LO QUE ESTA DENTRO DE EL.
UN PARENTESIS PRECEDIDO DEL SIGNO MAS, HACE QUE LO QUE ESTA DENTRO DEL PARENTESIS QUEDE TAL COMO ESTA.
ACTIVIDAD No. 3
COPIAR ESTA PARTE EN EL CUADERNO
LOS NUMEROS RACIONALES
…
Ejemplos de números racionales
- 142.
- 3133.
- 69,96 (1749/25)
- 625.
- 7,2 (36/5)
- 3,333333 (3/10)
En las operaciones matemáticas que se hacen a diario para resolver cuestiones cotidianas, casi todos los números que se manejan son racionales, pues la categoría abarca a todos los números enteros y a una gran parte de los que llevan decimales.
los números fraccionarios racionales como los irracionales (su contraparte) son categorías infinitas. Sin embargo, estos se comportan de diferente manera: los números racionales son comprensibles y, en tanto representables por fracciones, su valor se puede aproximar con un criterio simplemente matemático, no ocurre esto con los irracionales.
TAREA: ESCRIBIR DOS EJEMPLOS DE NUMEROS IRRACIONALES.
Tipos de fracciones
Fracciones propias
Son aquellas cuyo numerador es menor que el denominador. Su valor comprendido está entre cero y uno.
Recuerde que el numerador es el de la parte de arriba de la fracción y el denominador es el de la parte de abajo de la fracción.
Ejemplos
Fracciones impropias
Las fracciones impropias son aquellas cuyo numerador es mayor que el denominador. Su valor es mayor que 1.
Ejemplos:
ACTIVIDAD No. 4
REMENBER Y REPASE LA SIGUIENTE ACTIVIDAD:
¿ QUE ES UNA FRACCIÓN PROPIA ? ………………………………………………………………….
¿QUE ES UNA FRCCIÓN IMPROPIA? ………………………………………………………………
ACTIVIDAD No.5
Clasifica las siguientes fracciones como propias o impropias:
COLOCA AL FRENTE DE CADA FRACCION LA RESPECTIVA RESPUESTA.
ORGANIZA UN CUADRO EN SU CUADERNO, QUE TENGA DOS COLUMNAS Y COLOCA LA PREGUNTA Y LA RESPECTIVA RESPUESTA.
2.
3.
4 .
5.
6.
7.
8.
COMPARE SUS RESPUESTAS CON LAS QUE SE ENCUENTRAN A CONTINUACION.
1 – Propia
2 – Propia
3 – Impropia
4 – Impropia
5 – Impropia
6 – Propia
7 – Propia
8 – Impropia
NOTA: QUEDA EXPLICADO CON 8-2 HASTA ESTA PARTE
Numero mixto
Número mixto es el que está compuesto de parte entera y fraccionaria.
Para pasar de número mixto a fracción, se deja el mismo denominador y el numerador es la suma del producto del entero por el denominador más el numerador, del número mixto.
Para pasar una fracción impropia a número mixto, se divide el numerador por el denominador. El cociente es el entero del número mixto y el resto el numerador de la fracción, siendo el denominador el mismo.
Por ejemplo, si tenemos el número mixto , para pasar a fracciones debemos de hacer lo siguiente
NOTA: RESUME, 5 X 2 = 10 10 + 1 = 11 / 2
ACTIVIDAD No. 6
CREAR UN EJERCICIO, DE ACUERDO AL EJEMPLO.
Por otro lado, para pasar de la fracción impropia hacemos lo siguiente:
Fracciones decimales
Las fracciones decimales tienen como denominador una potencia de .
Fracciones equivalentes
Dos fracciones son equivalentes cuando el producto de extremos es igual al producto de medios, en otras palabras
en donde a y
se les conoce como extremos y a
y
como medios.
Un ejemplo de dos fracciones equivalentes son
NOTA: SE SOCIALIZA EL 15 DE MARZO LOS CUATRO PRIMEROS TALLERES.
…………………………………………………………………………………………..
NOTA: JUNIO 18 QUEDA PARA TERMINAR EL PRIMER PERIODO, LA ACTIVIDAD, 7, 8, 9
ACTIVIDAD No. 7 ( VER LOS 4 VIDEOS, HACER RESUMEN Y EJEMPLO)
TEMA: NUMEROS RACIONALES
INTRODUCCION A LOS NUMEROS RACIONALES CON EL PROFESOR ALEX.
SUMA, RESTA, MULTIPLICACION Y DIVISION.
VISUALIZAR LOS CUATRO VIDEOS.
- PRIMER VIDEO, INTRODUCCION A LOS NUMEROS RACIONALES CON EL PROFESOR ALEX.
2. SEGUNDO VIDEO, SUMA Y RESTA, CON EL PROFESOR ALEX.
3. TERCER VIDEO, MULTIPLICACION, CON EL PROFESOR ALEX.
4. CUARTO VIDEO, DIVISION, CON EL PROFESOR ALEX.
NOTA: DE CADA VIDEO HACER UN RESUMEN Y UN EJEMPLO.
ACTIVIDAD No. 8
3/ 8 + 2/ 3 =
3/8 – 2/3 =
3/8 x 2/3 =
3/ 8 / 2/3 =
ACTIVIDAD No. 9
VIDEO RELACIONADO CON LA POTENCIACION, LA RADICACION Y LA LOGARITMACION.
COPIA LO QUE ESTA EN EL VIDEO ELABORADO POR EL EL PROFESOR GUILLERMO.
ACTIVIDAD No. 10
TRABAJO EN CLASE CON LAS PRIMERAS VEINTE POTENCIAS Y RAICES.
……………………………………………………………………………………………………………………………………………..
SE ENVIA UN VIDEO CON LOS RESPECTIVOS EJEMPLOS.
NOTA: SE ENVIA EL VIDEO CON LA ACTIVIDAD, DE POTENCIACION, RADICACION Y LOGARITMACION PARA CERRAR EL PRIMER PERIODO. GRADO 8-1 y grado 8-2 JUNIO 21
EJES CONCEPTUALES DEL PRIMER PERIODO
Repaso general
– Enteros.
– Racionales
– Potenciación
– Radicación.
…………………………………………………………………………………………………………………………………………………
SANTIAGO DE CALI, JUNIO 21 DEL 2021
SEGUNDO PERIODO INICIA EL DIA 3 DE JULIO
ESTANDAR:
ESTANDARES BASICOS DE COMPETENCIA. Utilizo números racionales, en sus distintas expresiones (fracciones, razones, decimales o porcentajes) para resolver problemas en contextos de medida. Identifico y utilizo la potenciación, la radicación y la logaritmación para representar situaciones matemáticas y no matemáticas y para resolver problemas. * Justico procedimientos aritméticos utilizando las relaciones y propiedades de las operaciones. * Reconozco cómo diferentes maneras de presentación de información pueden originar distintas interpretaciones * Entiendo la importancia de mantener expresiones de afecto y cuidado mutuo con mis familiares, amigos, amigas y parejas, a pesar de las diferencias, disgustos o conflictos. * Identifico diferentes métodos para solucionar Msistemas de ecuaciones lineales. * Uso procesos inductivos y lenguaje algebraico para formular y poner a prueba conjeturas. Modelo situaciones de variación con función polinómica * Identifico relaciones entre propiedades de las gráficas y propiedades de las ecuaciones algebraicas. *Construyo expresiones algebraicas equivalentes a una expresión algebraica dada.
DERECHOS BASICOS DE APRENDIZAJE Desarrolla actividades relacionadas con el manejo de racionales.
* Caracteriza las propiedades de la potenciación relacionándolas con eventos matemáticos.
* Analiza y emite juicios acerca de situaciones y eventos que involucran racionales.
ESTRATEGIAS DE EVALUACION:
Considerando que la evaluación es un proceso y no un modelo sumatorio de promedios se considera todos los eventos dentro del ambiente de aprendizaje parte de la evaluación.
* Relación consigo mismo y con el otro.
* Posibilidades del trabajo en equipo.
*Desarrollo de actividades a partir del dominio individual del estudiante y de la temática que se aborda en el periodo.
* Responsabilidad y cumplimiento de pactos de trabajo.
* Participación de propuestas académicas según las posibilidades del estudiante: orales, escritas, graficas.
SEGUNDO PERIODO DE ALGEBRA- INICIA EL 3 DE JULIO
EJES CONCEPTUALES- ES LA CARTA DE NAVEGACION.
HISTORIA DEL ALGEBRA.
Expresiones algebraicas.
* Operaciones con expresiones algebraicas.
* Polinomios
-Ecuaciones lineales
ACTIVIDAD No. 1
ELABORAR UN CUADRO EN EL CUADERNO, DEL TAMAÑO DE LA HOJA, CON LOS SIGUIENTES DATOS:
HORA DE LA CLASE, LA ASIGNATURA, EL NOMBRE DEL PROFESOR, ENLACE Y UTILIZAR COLOR AMARILLO PARA LAS HORAS ASINCRONICAS. TAMBIEN EL CORREO DEL MAESTRO.
ACTIVIDAD No. 2
HISTORIA DEL ALGEBRA: ( SOLO PARA LECTURA)
La historia del álgebra, como en general la matemática, comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax 2 + bx = c), así como ecuaciones indeterminadas como x 2 + y 2 = z 2 , con varias incógnitas.
Fue el matemático inglés George Boole quien inventó un sistema de álgebra que es clave para la programación de hoy en día.
Se conoce como álgebra a la rama de la matemática en la cual las operaciones son generalizadas empleando números, letras y signos que representan simbólicamente un número u otra entidad matemática. … Etimológicamente, la palabra álgebra es de origen árabe que significa “recomposición” o “reintegración”.
El álgebra es una asignatura obligatoria en cualquier escuela secundaria. Su importancia radica en que suele ser vista como la puerta de acceso a las matemáticas avanzadas. Haber cursado el primer año de álgebra es un prerrequisito para las matemáticas avanzadas: geometría, álgebra II, trigonometría y cálculo.
Los matemáticos de la Antigua Grecia introdujeron una importante transformación al crear un álgebra de tipo geométrico, en donde los «términos» eran representados mediante los «lados de objetos geométricos», usualmente líneas a las cuales asociaban letras. Los matemáticos helénicos Herón de Alejandría y Diofanto.
ACTIVIDAD No. 3 LA HISTORIA DEL ALGEBRA. RESPONDER DE ACUERDO AL TEXTO.
1. DONDE COMIENZA EL ALGEBRA: | EN EL ANTIGUO EGIPTO Y BABILONIA. |
2. QUE ECUACIONES RESOLVIAN: | ECUACIONES LINEALES Y CUADRATICAS |
3. QUIEN INVENTÓ UN SISTEMA DE ALGEBRA: | |
4. PARA QUE ES CLAVE ESTE SISTEMA QUE INVENTO BOOLE. | |
5. EL ALGEBRA ES UNA RAMA DE: | |
6. QUE SE EMPLEA EN EL ALGEBRA: | |
7. LA PALABRA ALGEBRA ES DE ORIGEN: | |
8. QUE SIGNIFICA LA PALABRA ALGEBRA: | |
9. CUAL ES LA IMPORTANCIA DEL ALGEBRA: | |
10. EN GRECIA QUE INTRODUJERON: |
11. CUAL ES EL PRECURSOR DEL ALGEBRA: | |
12. CUAL ES LA FUNCION DEL LENGUAJE ALGEBRAICO. | |
13. QUIEN INVENTÓ LAS TABLAS DE MULTIPLICAR: | |
14. SE LE CONOCE COMO EL PADRE DE LOS NUMEROS: | |
15. QUIEN ERA AL-JUARISMI:
16. CUAL ES LA DIFERENCIA ENTRE ALGEBRA Y ARITMETICA: |
|
17. QUE SUCEDIA EN EL SIGLO XVII : | |
18. QUE SUCEDIA EN EL SIGLO XVI:
19. DONDE SE PUEDE BUSCAR EL ORIGEN DEL ALGEBRA: 20. QUE CULTURA INICIO EL ALGEBRA Y PORQUE: |
|
21. CUAL ES LA UTILIDAD DE USAR EXPRESIONES ALGEBRAICAS: | |
22. CON EL LENGUAJE ALGEBRAICO QUE EXPRESAMOS. | |
ACTIVIDAD No. 4
VOCABULARIO DE TERMINOS ALGEBRAICOS
|
|||||||||||||||||||||
11. | |||||||||||||||||||||
ACTIVIDAD No. 5
COPIAR EN SU CUADERNO.
TERMINOS IMPORTANTES PARA REFORZAR LOS CONOCIMIENTOS ALGEBRAICOS.
Cuáles son los terminos de una expresion algebraica? |
Se llama término a toda expresión algebraica cuyas partes no están separadas por los signos + o -. … En todo término algebraico pueden distinguirse cuatro elementos: el signo, el coeficiente, la parte literal y el grado.
|
Cuáles son las propiedades algebraicas? |
Propiedades Asociativa, Conmutativa, y Distributiva. Hay muchas veces que en el álgebra necesitas simplificar una expresión. … Las propiedades asociativa, conmutativa, y distributiva del álgebra son propiedades que se usan comúnmente para simplificar expresiones algebraicas.
|
Que es un monomio ? | Monomio es una expresión algebraica en la que se utilizan incógnitas de variables literales que constan de un solo término (si hubiera una suma o una resta sería un binomio), y un número llamado coeficiente. Se llama parte literal de un monomio a las letras con sus exponentes. |
ALGEBRA: | Algebra: Parte de las matemáticas que utiliza letras, llamadas variables o incógnitas, para representar cantidades, cuyo valor se trata de averiguar. |
ACTIVIDAD No. 6
EJEMPLO DE EXPRESIONES ALGEBRAICAS.
COMPLETAMOS LA TABLA.
NOTA: LA PARTE LITERAL, SE REFIERE A LAS VARIABLES QUE INTERVIENEN EN LA EXPRESION ALGEBRAICA.
ACTIVIDAD No. 7
EJEMPLO PARA VISUALIZAR EN UNA EXPRESION ALGEBRAICA, EL GRADO, CUANDO ES MONOMIO, BINOMIO Y TRINOMIO.
COPIAR EN SU RESPECTIVO CUADERNO.
- 8x2 , -5x2 , x2 son monomios semejantes (todos tienen la misma parte literal x2)
- 3xy4, -2xy4 son monomios semejantes (todos tienen la misma parte literal xy4 )
CONSULTAR: QUE ES UN BINOMINO, Y UN TRINOMIO.
ACTIVIDAD No. 8
ENVIO DE VIDEO POR EL GRUPO RELACIONADO CON LAS EXPRESIONES ALGEBRAICAS.
ACTIVIDAD No. 9
REALIZAR UNA REFLEXION DE 3 RENGLONES DE LA PELICULA ” CADENA DE FAVORES “
NOTA: INVITARLOS PARA QUE REVISEN LA GUIA DEL BUEN USO DEL TIEMPO LIBRE.
ACTIVIDAD No. 10
TEMA: MENTALIDAD DE POBREZA
RELACIONADO CON LA EDUCACION FINANCIERA.
OBJETIVO: REFLEXIONAR AL RESPECTO Y COPIARLO EN EL CUADERNO.
SE ENVIA EL DOCUMENTO AL GRUPO.
ACTIVIDAD No. 11
LIBRO DE AURELIO BALDOR.
https://guao.org/sites/default/files/biblioteca/%C3%81lgebra%20de%20Baldor.pdf